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Abstract. Recent years have seen significant advances in quantum/quantum-inspired technologies capable of

approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies
to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to
integrate Ising problems as part of their solution process, with existing approaches ranging from direct transcription
to hybrid quantum-classical approaches rooted in existing optimization algorithms. While it is widely acknowledged
that quantum computers should augment classical computers, rather than replace them entirely, comparatively little
attention has been directed toward deriving analytical characterizations of their interactions. In this paper, we present
a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs (MBQP) via Ising
solvers. We show the exactness of a convex copositive reformulation of MBQPs, allowing the resulting reformulation
to inherit the straightforward analysis of convex optimization. We propose to solve this reformulation with a hybrid
quantum-classical cutting-plane algorithm. Using existing complexity results for convex cutting-plane algorithms, we
deduce that the classical portion of this hybrid framework is guaranteed to be polynomial time. This suggests that
when applied to NP-hard problems, the complexity of the solution is shifted onto the subroutine handled by the Ising
solver.

1. Introduction. Recent years have seen significant advances in quantum and quantum-inspired
Ising solvers, such as quantum annealers [1], quantum approximate optimization circuits [2], or co-
herent Ising machines [3]. These are devices/methodologies designed to solve optimization problems
of the form: minz∈{−1,1}n

∑
i,j Ji,jzizj +

∑
i hizi, where Ji,j , hi are real coefficients and zi ∈ {−1, 1}

are discrete variables to be optimized over. The promise of leveraging such technologies to speed up
the solution of complex optimization problems has spurred many researchers to explore how Ising
solvers can be applied to problems in various domains.

A standard approach has emerged where an optimization problem is directly transcribed into an
Ising problem, and the returned solution is taken at face value or with minimal post-processing. While
this method works well for problems that organically have an Ising form, sequences of reformulations
can result in ill-conditioning of the problem in terms of the number of additional variables, the
coupling strengths, and the optimization landscape. Most unnaturally, however, relying solely on the
Ising solver means forgoing the advantages of already powerful classical computers.

In an effort to introduce meaningful interplay between classical and quantum computers, a few
authors have proposed decomposition methods based on the Alternating Direction Method of Multi-
pliers (ADMM), [4], or Benders Decomposition (BD), [5, 6, 7]. Critically, when ADMM is applied to
non-convex problems, it is not guaranteed to converge. When it does, it is often to a local optimum
without convergence guarantees to global optimality. On the other hand, while it may be possible to
derive optimality guarantees using BD, proving convergence typically relies on an exhaustive search
through the “complicating variables”. This makes it unclear whether such an algorithmic scaffold is
primed to take advantage of speed-ups that the Ising solver may offer.

Contributions. Our work is motivated by the desire to rigorously analyze the interplay between
classical and quantum machines in hybrid algorithms. Such analysis is a cornerstone for articulating
and setting standards for hybrid quantum-classical optimization algorithms. Specifically, we espouse
convergent hybrid quantum-classical algorithms that (1) use Ising solvers as a primitive while offering
some resilience to their heuristic nature and (2) have polynomial complexity in the classical portions
of the algorithm. To this end, the contribution of this paper is an algorithmic framework that satisfies
these key desiderata. Concretely,

1. We revisit and prove strong duality of a result in [8] to show that the convex copositive
formulation of many mixed-binary quadratic optimization problems is exact. Neglecting
the challenges of working with copositive matrices, convex programs are a well-understood
class of optimization problems with a wide variety of efficient solution algorithms. By re-
formulating mixed-binary quadratic programs as copositive programs, we open the door for
hybrid-quantum classical algorithms that are based on existing convex optimization algo-
rithms.

2. To solve the copositive programs, we propose a novel hybrid quantum-classical optimization
algorithm based on cutting-plane algorithms, a well-established class of convex optimization
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algorithms. We show that the complexity of the portion of the algorithm handled by the
classical computer has polynomial scaling. This analysis suggests that when applied to NP-
hard problems, the complexity of the solution is shifted onto the subroutine handled by the
Ising solver.

3. We conducted benchmarking based on the maximum clique problem to validate our theoret-
ical claims and evaluate potential speed-ups from using a stochastic Ising solver in lieu of
a state-of-the-art deterministic solver or an Ising heuristic. Results indicate that the Ising
formulation of the subproblems of the hybrid algorithm is efficient versus a MIP formula-
tion in Gurobi, and the hybrid algorithm is competitive even against a non-hybridized Ising
formulation of the full problem solved by simulated annealing.

While preparing this manuscript, a hybrid quantum-classical method relying upon a Frank-Wolfe
method was published [9]. This work also leverages a similar copositive reformulation of quadratic
binary optimization problems. We highlight the differences between that work and the one in our
manuscript below. This manuscript considers the optimization problem class of mixed-binary qua-
dratic programs, while in [9], the authors propose their method for quadratic binary optimization
problems, a subcase of the problems considered herein. Moreover, we provide proof of the exactness
and strong duality for copositive/completely positive optimization stemming from the mixed-integer
quadratic reformulation, addressing an open question in the field. In their manuscript, [9] conjectures
the results proved in this manuscript to be true. Finally, our solution method, which is based on
cutting-plane algorithms, has a potential exponential speed-up in runtime compared to Frank-Wolfe
algorithms.

1.1. Related Work. One dominant method for mapping optimization problems into Ising prob-
lems is through direct transcription. This process typically involves discretizing continuous variables
and passing constraints into the objective through a penalty function; the returned solution is often
taken at face value or with minimal post-processing to enforce feasibility. Owing to its simplicity, this
process has found applications in a variety of problems, including jobshop scheduling [10], routing
problems [11], community detection [12], and all of Karp’s 21 NP-complete models [13], among oth-
ers. Critically, unless a problem organically takes an Ising form, this approach often requires many
auxiliary variables (spins), introduces large skews in the coupling coefficients, and can result in poor
conditioning of the optimization landscape, thus limiting the problems that can be solved on near-term
devices. Similarly, extending the class of applicable problem instances requires deriving increasingly
complex sequences of reformulations, each of which reduces the solubility of the final reformulation.
More importantly, an algorithm with minimal interactions between classical and quantum computers
disregards the bountiful successes of classical computers in the past decades. This has inspired some
researchers to examine how quantum computers can be used to augment classical computers instead
of replacing them entirely [14].

As an alternative to direct transcription, there is a burgeoning body of literature exploring the
potential of decomposition methods for designing hybrid quantum-classical algorithms. These gen-
erally refer to algorithms that divide effort between a classical and quantum computer, with each
computer informing the computation carried out by the other. Among these, algorithms based on
the Benders Decomposition (BD) are gaining traction. BD is particularly effective for problems char-
acterized by “complicating variables”, for which the problem becomes easy once these variables are
fixed. For example, a mixed-integer linear program (MILP) becomes a linear program (LP) once the
integer variables are fixed–the integers are the complicating variables. BD iterates between solving a
master problem over the complicating variables and sub-problems where the complicating variables
are fixed, whose solution is used to generate cuts for the master problem. Both [5] and [6] consider
mixed-integer programming (MIP) problems where the integer variables are linked to the continuous
variables through a polyhedral constraint and leverage a reformulation where dependence on the con-
tinuous variables is expressed as constraints over the extreme rays and points of the original feasible
region. Because the number of extreme rays and points may be exponentially large, the constraints
are not written down in full but are iteratively generated from the solutions of the sub-problems. The
master problem is an integer program consisting of these constraints and is solved using the quan-
tum computer. Notably, the generated constraint set may be large, with the worst case being the
generation of the entire constraint set, resulting in a large number of iterations. The approach in [7]
attempts to mitigate this by generating multiple cuts per iteration and selecting the most informative
subset of these cuts. Instead of using the quantum computer to solve the master problem, the quan-
tum computer is used to heuristically select cuts based on a minimum set cover or maximum coverage
metric. While this may effectively reduce the number of iterations and size of the constraint set, the
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master problem is often an integer program that may be computationally intractable. For each of
the proposed approaches, it is unclear how the complexity of the problem is distributed through the
solution process–for example, for [5, 6] the complexity might show up in the number of iterations, and
for [7] it might show up when solving the master problem. Consequently, it is ambiguous whether
BD-based approaches can take advantage of a speed-up in the Ising solver, even if one were to exist.

Another decomposition that has been explored is based on the Alternating Direction Method
of Multipliers (ADMM)[4]. This is an algorithm to decompose large-scale optimization problems
into smaller, more manageable sub-problems [15]. While originally designed for convex optimization,
ADMM has shown great success as a heuristic for non-convex optimization as well, [16], and significant
progress has been made towards explaining its success in such settings [17]. In [4], the authors
propose an ADMM-based decomposition with three sub-problems: the first being over just the binary
variables, the second being the full problem with a relaxed copy of the binary variables, and the
third being a term that ties the binary variables and their relaxed copies together. For quadratic
pure-binary problems, the authors show that the algorithm converges to a stationary point of the
augmented Lagrangian, which may not be a global optimizer–convergence to a global optimum is only
guaranteed under the more stringent Kurdyka- Lojasiewicz conditions on the objective function [18].
Unfortunately, the assumptions guaranteeing convergence to a stationary point fail in the presence
of continuous variables.

A third class of decomposition proposed and implemented in the qbsolv solver is based on tabu
search [19]. qbsolv can be seen as iterating between a large-neighborhood local search (using an
Ising solver) and tabu improvements to locally refine the solution (using a classical computer), where
previously found solutions are removed from the search space in each iteration. During the local
search phase, subsets of the variables are jointly optimized while the remaining variables are fixed
to their current values. The solution found in this phase is then used to initialize the tabu search
algorithm, and the process is repeated for a fixed number of iterations. Critically, it is unclear whether
the algorithm is guaranteed to converge and, if so, what its optimality guarantees are. While finite
convergence of tabu search is investigated in [20], it relies on either recency or frequency memory that
ensures an exhaustive search of all potential solutions.

Another approach for purely integer programming problems is based on the computation of a
Graver basis through the computation of the integer null-space of the constraint set as proposed in
[21]. This null-space computation is posed as a quadratic unconstrained binary optimization (QUBO)
and then post-processed to obtain the Graver basis of the constraint set, a test-set of the problem. The
test-set provides search directions for an augmentation-based algorithm. For a convex objective, it
provides a polynomial oracle complexity in converging to the optimal solution. The authors initialize
the problem by solving a feasibility-based QUBO and extend this method to non-convex objectives
by allowing multiple starting points for the augmentation. The multistart procedure also alleviates
the requirement for computing the complete Graver basis of the problem, which grows exponentially
with the problem’s size. Considering an incomplete basis or non-convex objectives makes the Graver
Augmentation Multistart Algorithm (GAMA) a heuristic for general integer programming problems,
and it cannot address problems with continuous variables.

In this paper, we seek to address a gap in the literature on a rigorous theory of hybrid quantum-
classical optimization. By elucidating the hidden convex structure of non-convex problems, we pave
the way for hybrid algorithms based on efficient convex optimization. We show that algorithms
derived through this approach inherit the straightforward analysis of convex optimization without
sacrificing the potential benefits of quantum computing for non-convex problems.

1.2. Quantum/Quantum-inspired Ising Solvers. Adiabatic quantum computing (AQC) is
a quantum computation paradigm that operates by initializing a system in the ground stateof an initial
Hamiltonian (i.e., the optimal solution of the corresponding objective function) and slowly sweeping
the system to an objective Hamiltonian. This Hamiltonian, referred to as the cost Hamiltonian,
maps the objective function of the classical Ising model onto a system with as many quantum bits,
or qubits, as original variables in the Ising model. The adiabatic theorem of quantum mechanics
states that if the system evolution is “sufficiently slow”, the system ends up in the ground state of
the desired Hamiltonian. Here, “sufficiently slow” depends on the minimum energy gap between the
ground and the first excited state throughout the system evolution [22]. Since the evaluation of the
minimal gap is mostly intractable, one is forced to phenomenologically “guess” the evolution’s speed,
and if it is too fast, the undesired non-adiabatic transitions can occur. Additionally, real devices
are plagued with various incarnations of physical noise, such as thermal fluctuations or decoherence
effects, that can hamper computation. The situation is further exacerbated by the challenge of
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achieving dense connectivity between qubits–densely connected problems are embedded in devices by
chaining together multiple physical qubits to represent one logical qubit. The heuristic computational
paradigm that encompasses the additional noise and non-quantum effects is known as Quantum
Annealing (QA)– [23] provides a review on QA with a focus on possible routes towards solving the
open questions in the field.

An alternative paradigm to AQC is the gate-based model of quantum computing. Within the
gate-based model, Variational Quantum Algorithms (VQAs) is a class of hybrid quantum-classical
algorithms that can be applied to optimization [24]. VQAs share a common operational principle
where the “loss function” of a parameterized quantum circuit is measured on a quantum device and
evaluated on a classical processor, and a classical optimizer is used to update (or “train”) the circuit’s
parameters to minimize the loss. VQAs are often interpreted as a quantum analog to machine learning,
leaving many similar questions open regarding their trainability, accuracy, and efficiency. Most similar
in spirit to this work is a theory of variational hybrid quantum-classical algorithms proposed in
[25]. However, they primarily focus on algorithmic improvements to the quantum portion, with
discussion of the classical optimization being limited to empirical evaluations of existing derivative-free
optimization algorithms. More recently, [26] analyzed the complexity of training VQAs, and through
reductions from the maximum cut problem, showed that it is NP-hard. The analysis presented in this
paper complements these prior works in developing a more complete picture of the interplay between
quantum and classical computers.

The quantum approximate optimization algorithm (QAOA) is a specific instance of a VQA where
the structure of the quantum circuit is the digital analog of adiabatic quantum computing [2]. QAOA
operates by alternating the application of the cost Hamiltonian and a mixing Hamiltonian; the number
of alternating blocks is referred to as the circuit depth. For each one of the alternating steps, either
mixing or cost application, a classical optimizer needs to determine how long each step should be
performed, encoded as rotation angles. Optimizing the expected cost function with respect to the
rotation angles is a continuous low-dimensional non-convex problem. QAOA is designed to optimize
cost Hamiltonians, such as the ones derived from classical Ising problems. Performance guarantees
can be derived for QAOA with well-structured problems, given that the optimal angles are found
in the classical optimization step. Although approximation guarantees have not been derived for
arbitrary cost Hamiltonians, even depth-one QAOA circuits have non-trivial performance guarantees
for specific problems and cannot be efficiently simulated on classical computers [27], thus bolstering
the hope for a speed-up in near-term quantum machines. Moreover, the algorithm’s characteristics,
such as relatively shallow circuits, make it amenable to be implemented in currently available noisy
intermediate-scale quantum (NISQ) computers compared to other algorithms requiring fault-tolerant
quantum devices [28]. While QAOA’s convergence to optimal solutions is known to improve with
increased circuit depth and to succeed in the infinite depth limit following its equivalence to AQC,
its finite depth behavior has remained elusive due to the challenges in analyzing quantum many-body
dynamics and other practical complications such as decoherence when implementing long quantum
circuits, compilation issues, and hardness of the optimal angle classical problem [29]. Even considering
these complications, QAOA has been extensively studied and implemented in current devices [30,
31], becoming one of the most popular alternatives to address combinatorial optimization problems
modeled as Ising problems using gate-based quantum computers. Several other quantum heuristics
for Ising problems have been proposed, usually requiring fault-tolerant quantum computers. We
direct the interested reader to a recent review on the topic [32].

An alternative physical system for solving Ising problems that has emerged is coherent Ising
machines (CIMs), which are optically pumped networks of coupled degenerate optical parametric
oscillators. As the pump strength increases, the equilibrium states of an ideal CIM correspond to
the Ising Hamiltonian’s ground states encoded by the coupling coefficients. Large-scale prototypes
of CIMs have achieved impressive performance in the lab, thus driving the theoretical study of their
fundamental operating principles. While significant advances have been made on this front, we still
lack a clear theoretical understanding of the CIMs’ computational performance. Since a thorough
understanding of the CIM is limited by our capacity to prove theorems about complex dynamic sys-
tems, near-term usage of CIMs must treat them as a heuristic rather than a device with performance
guarantees [33]. Even so, there are empirical observations that in many cases, the median complexity
of solving Ising problems using CIM scales as exp

√
N where N is the size of the problem [34], making

it a potential approach to solve these problems efficiently in practice. We note that there are other
types of Ising machines, including classical thermal annealers (based on magnetic devices [35], optics
[36], memristors [37], and digital hardware accelerators [38]), dynamical-systems solvers (based on
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optics [39] and electronics [40]), superconducting-circuit quantum annealers [41], and neutral atoms
arrays [42]. We direct the interested reader to [34], which provides a recent review and comparison
of various methods for constructing Ising machines and their operating principles.

While there is optimism regarding improvements to and our understanding of quantum technology
in the coming decades, few expect that they will replace classical computers entirely. We believe that
the method presented in this paper is an approach to algorithm design that anticipates a future where
quantum computers and classical computers work in tandem. In particular, we envision a mature
theory of hybrid algorithms that clearly delineates how quantum and classical computers should
complement each other.

Organization. In Section 2, we present notation, terminology, and the problem setting covered by
our approach. In Section 3, we introduce the proposed framework, including convex reformulation via
copositive programming, a high-level overview of cutting-plane algorithms, and a specific discussion
of their application to copositive programming. Section 4 provides numerical experiments supporting
our assertions about the proposed approach. Finally, we conclude and highlight future directions in
Section 5.

2. Preliminaries.

2.1. Notation and Terminology. In this paper, we solely work with vectors and matrices
defined over the real numbers and reserve lowercase letters for vectors and uppercase letters for
matrices. We will also follow the convention that a vector x ∈ Rn is to be treated as a column vector,
i.e., equivalent to a matrix of dimension n× 1. For a matrix M , we use Mi,j to denote the entry in
the ith row and jth column, Mi,∗ denotes the entire ith row, and M∗,j denotes the entire jth column.
In the text, we frequently use block matrices with structured zero entries; we use · as shorthand for
zero entries. We use 1 to denote the all-ones vectors and 1{j} to denote the jth standard basis vector
(i.e., a vector where all entries are zero except for a 1 for the jth entry). The p-norm of a vector

v ∈ Rn is defined as ∥v∥p := (
∑n

i=1 v
p
i )

1/p
. We reserve the letter I to denote the identity matrix. For

two matrices, M and N , we use ⟨M, N⟩ = Tr(M⊤N) to denote the matrix inner product. Note that
for two vectors, Tr(x⊤y) = x⊤y because x⊤y is a scalar, so the matrix inner product is consistent
with the standard inner product on vectors. For sets, SM + SN := {M + N | M ∈ SM , N ∈ SN} is
their Minkowski sum, SM ∪ SN their union, and SM ∩ SN their intersection. For a cone, K, its dual
cone is defined as K∗ = {X | ⟨X, K⟩ ≥ 0,∀K ∈ K}. While we work with matrix cones in this paper,
this definition of dual cones is consistent with vector cones as well. In this paper, the two cones we
will work with are the cone of completely positive matrices and the cone of copositive matrices. The
cone of completely positive (CP) matrices, C∗, is the set of matrices that have a factorization with
entry-wise non-negative entries:

(2.1) C∗n := {X ∈ Rn×n | X =
∑
k

x(k)(x(k))⊤, x(k) ∈ Rn
≥0}

The cone of copositive matrices, C, is the set of matrices defined by:

(2.2) Cn := {X ∈ Rn×n | v⊤Xv ≥ 0, ∀v ∈ Rn
≥0}

As suggested by the notation, the cones of completely positive and copositive matrices are duals of
each other. We use Sn

++ to denote the cone of positive definite matrices.
In this paper, we will use the terms Ising problem and quadratic unconstrained binary op-

timization (QUBO) interchangeably. An Ising problem is an optimization problem of the form:
minz∈{−1,1}n

∑
i,j Ji,jzizj +

∑
i hizi, where Ji,j , hi are real coefficients and zi ∈ {−1, 1} are dis-

crete variables to be optimized over. A QUBO, which is an optimization problem of the form
minx∈{0, 1}n

∑
i,j Qi,jxixj can be reformulated as an Ising problem using the change of variable

z = 2x − 1. This translates to coefficients in the Ising problem Ji,j = 1
4Qi,j , hi = 1

2

∑
j Qi,j ,

and a constant offset of 1
4

∑
i,j Qi,j .

2.2. Problem Setting. In this paper, we consider mixed-binary quadratic programs (MBQP)
of the form:

(MBQP)

minimize
x ∈ Rn

x⊤Qx + 2c⊤x

subject to Ax = b, A ∈ Rm×n, b ∈ Rm,

x ≥ 0,

xj ∈ {0, 1}, j ∈ B
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where the set B ⊆ {1, . . . , n} indexes which of the n variables are binary. This is a general class
of problems that encompasses problems including QUBOs, standard quadratic programming, the
maximum stable set problem, and the quadratic assignment problem. Because mapping to an Ising
problem can also be equivalently expressed as a QUBO, many problems tackled with Ising solvers
thus far pass through a formulation similar to the form of Problem (MBQP). Using the result in [8,
Sec. 3.2], the formulation considered in this paper can be extended to include constraints of the form
xixj = 0 that force at least one of xi or xj to be zero, i.e., complementarity constraints. For ease of
notation, this extension is left out of the present discussion.

3. Proposed Methodology. In this section, we will discuss our proposed methodology for
solving Problem (MBQP) given access to Ising solvers. Our result relies on a convex reformulation
of Problem (MBQP) as a copositive program. Leveraging convexity, we propose to solve the problem
using cutting-plane algorithms. These belong to a broad class of convex optimization algorithms
whose standard components give rise to a natural separation between the role of the Ising solver
versus a classical computer.

We first state Burer’s exact reformulation of Problem (MBQP) as a completely positive program
and its dual copositive program. We then show that under mild conditions (i.e., feasibility and
boundedness) of the original MBQP, the copositive and completely positive programs exhibit strong
duality. We will then introduce the class of cutting-plane algorithms and summarize the complexity
guarantees of several well-known variants. Finally, we explicitly show how cutting-plane algorithms
can be used to solve copositive optimization problems given a copositivity oracle and discuss how to
implement a copositivity oracle using an Ising solver.

3.1. Convex formulation as a copositive program. In his seminal work, Burer showed that
MBQPs can be represented exactly as completely positive programs of the form:

(CPP)

minimize
X ∈ Rn×n, x ∈ Rn

〈(
Q c

c⊤ ·

)
,
(

X x

x⊤ 1

)〉
subject to

〈(
· 1

2A
⊤
i,∗

1
2Ai,∗ ·

)
,
(

X x

x⊤ 1

)〉
= bi, i = 1, . . . ,m,〈(

A⊤
i,∗Ai,∗ ·

· ·

)
,
(

X x

x⊤ 1

)〉
= b2i , i = 1, . . . ,m,〈(

−1{j}1{j}
⊤ 1

21{j}
1
21{j}

⊤ ·

)
,
(

X x

x⊤ 1

)〉
= 0, j ∈ B,(

X x

x⊤ 1

)
∈ C∗n+1,

where exactness means that Problems (MBQP) and (CPP) have the same optimal objective and
for an optimal solution, (x∗, X∗), of (CPP), x∗ lies within the convex hull of optimal solutions for
(MBQP) [8, Theorem 2.6]. Similar to semi-definite programming (SDP) relaxations, the completely
positive formulation involves lifting the variables in (MBQP) to a matrix variable representing their
first and second-degree monomials, making the objective function and constraints linear. Unlike SDP
relaxations, however, the complete positivity constraint is sufficient for ensuring that the feasible
region of (CPP) is exactly the convex hull of the feasible region of (MBQP). This distinction is what
ensures that the optimal value of (CPP) is exactly that of (MBQP), whereas for an SDP relaxation,
the optimal solution may lie outside of the convex hull of (MBQP), resulting in a lower objective
value (i.e., a relaxation gap).

Taking the dual of (CPP) yields a copositive optimization problem of the form [43, Section 5.9]:

(COP)
maximize
µ, λ, γ

γ +

m∑
i=1

µ
(lin)
i bi + µ

(quad)
i b2i

subject to M(µ, λ, γ) ∈ Cn+1,

where

(3.1)

M(µ, λ, γ) :=
(

Q c

c⊤ ·

)
−

m∑
i=1

µ
(lin)
i

(
· 1

2A
⊤
i,∗

1
2Ai,∗ ·

)
−

m∑
i=1

µ
(quad)
i

(
A⊤

i,∗Ai,∗ ·
· ·

)
−
∑
j∈B

λj

(
−1{j}1{j}

⊤ 1
21{j}

1
21{j}

⊤ ·

)
− γ
(
· ·
· 1

)
6



is a parametrized linear combination of the constraint matrices. The dual copositive program has a
linear objective and a single copositivity constraint—this is a convex optimization problem. While
weak duality always holds between an optimization problem and its dual, strong duality is not gen-
erally guaranteed. Showing that strong duality holds is critical for ensuring convergence of specific
optimization algorithms and exactness when solving the dual problem as an alternative to solving the
primal.

Theorem 3.1 (Strong Duality). If Problem (MBQP) is feasible with bounded feasible region,
then strong duality holds between Problems (CPP) and (COP) (i.e., min (CPP) = max (COP)).

Proof Sketch. Our proof proceeds by first showing strong duality between the alternative repre-
sentation of (CPP) (using a homogenized formulation of the equality constraints) and its dual. By
showing that the optimal value of (COP) is lower-bounded by the optimal value of this homogenized
dual problem, we can sandwich the optimal values of Problems (CPP) and (COP) by those of a
primal-dual pair that has been shown to exhibit strong duality. The complete proof of this result is
provided in Appendix 6.1.

In prior work, characterization of the duality gap between Problems (CPP) and (COP) has remained
elusive because the feasible region of Problem (CPP) never has an interior, thus prohibiting straight-
forward application of Slater’s constraint qualification. This result is significant because it shows
that under mild conditions, the copositive formulation is exact. This means that the optimal values
of Problems (MBQP) and (COP) are equivalent, so solving Problem (COP) is a valid alternative to
solving Problem (MBQP). Moreover, the optimal solution of Problem (CPP) can be recovered from
the optimal solution of Problem (COP) by optimizing the Lagrangian function with respect to the
optimal dual variables [44, Prop 5.3.3], albeit by solving a completely positive program. The frame-
work developed in this paper will ultimately produce approximate solutions for Problems (CPP) and
(COP), which we anticipate can be used to speed up the solution process of a purely classical solver
for (MBQP)–how to do so is a question we leave to future work.

While Problems (CPP) and (COP) are both convex, neither resolve the difficulty of Problem
(MBQP) as even checking complete positivity (resp. copositivity) of a matrix is NP-hard (resp. co-
NP-complete) [45]. Instead, they should be viewed as “packaging” the complexity of the problem
entirely in the copositivity/complete positivity constraint. There are a number of classical approaches
for (approximately) solving copositive/completely positive programs directly, such as the sum of
squares hierarchy [46, 47], feasible descent method in the completely positive cone, approximations
of the copositive cone by a sequence of polyhedral inner and outer approximations, among others
[48, 49, 50]. In this paper, we will exploit the innate synergy between checking copositivity, which
is most naturally posed as a quadratic minimization problem, and solving Ising problems. This
perspective is suggestive of a hybrid quantum-classical approach where the quantum computer is
responsible for checking feasibility (i.e., the “hard part”) of the copositive program while the classical
computer directs the search towards efficiently reducing the search space.

3.2. Cutting-Plane/Localization Algorithms. Cutting-plane/localization algorithms are con-
vex optimization algorithms that divide labor between checking feasibility–abstracted as a separation
oracle–and optimization of the objective 1. In this section, we provide a high-level overview of each
algorithmic step and summarize both the runtime and oracle complexities of several well-known
variants; these complexity measures will ultimately correspond to the complexity of the sub-routine
handled by the classical computer and the number of calls to the Ising solver, respectively.

While cutting-plane algorithms are often used to solve both constrained and unconstrained op-
timization problems, they are generally evaluated in terms of their complexity when solving the
feasibility problem.

Definition 3.2 (Feasibility Problem). For a set of interest S ⊂ Rm, which can only be accessed
through a separation oracle, the feasibility problem is concerned with either finding a point in the set
x ∈ S or proving that S does not contain a ball of radius r.

Definition 3.3 (Separation Oracle). A separation oracle for a set S, OracleS(·) takes as input
a point x ∈ Rm and either returns True if x ∈ S or a separating hyperplane if x ̸∈ S. A separating

1The term “cutting-plane algorithm” overloaded in the literature, with one class referring very explicitly to those
designed for convex/quasi-convex optimization problems (for a pedagogical reference, we refer the interested reader to
[51]) and the second referring more broadly to algorithms that iteratively generate cuts (including algorithms for integer
programming and non-convex optimization). In this work, we refer specifically to those designed for convex/quasi-
convex optimization.
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hyperplane is defined by a vector, a ∈ Rm and scalar b ∈ R such that a⊤s ≤ b for all s ∈ S but
a⊤x ≥ b.

The feasibility problem formulation is non-restrictive because these methods can be readily adapted
to solving quasi-convex optimization problems with only a simple modification to the separation
oracle. In particular, if the separation oracle indicates feasibility and returns a vector g ∈ Rm

where any vectors x, y ∈ Rm with f(y) < f(x) implies that g⊤y ≥ g⊤x, this serves as a separating
hyperplane for the subset of the feasible region that has a better objective than the test point. If
f is subdifferentiable, any subgradient g ∈ ∂f(x) satisfies this condition, and for Problem (COP),
choosing g as the objective’s coefficient vector is sufficient.

Although there are many variations of cutting-plane algorithms, at a high level, they follow a
standard template that consists of alternating between checking feasibility of a test point, updating an
outer approximation of the feasible region, and judiciously selecting the next test point. This standard
template is summarized in Algorithm 1. An overview of the Ellipsoid algorithm is included in the
Appendix as a representative example of cutting-plane algorithms, and we direct the interested reader
to the references listed in Table 1 for specific implementation details. By choosing subsequent test
points to be the center of the outer approximation, the algorithm is guaranteed to make consistent
progress in reducing the search space (where the metric of progress may also vary across cutting-
plane algorithms). Intuitively, cutting plane algorithms can be considered a high-dimensional analog
of binary search.

Algorithm 1: Cutting-plane meta-algorithm (feasibility problem)

Input: S0 ⊆ Rm (Initial Set) with Vol(S0) ≤ R
Output: x ∈ S or False if S does not contain a ball of volume r
x← Center(S0);
k ← 0;
while Oracle(x) is not True and Vol(Sk) ≥ r do

Sk+1 ← Add Cut(Sk, Oracle(x));
x← Center(Sk+1);
k ← k + 1;

end
if Oracle(x) is True then

return x;
else

return False ;
end

A number of well-known variants of cutting-plane algorithms are summarized in Table 1. Differ-
ences across instantiations of cutting-plane algorithms vary in how subsequent test points are chosen,
how the outer approximation is updated, and how progress in decreasing the outer approximation’s
size is measured. Each of the surveyed variants strikes a different balance between the computational
effort needed to compute a good center versus the resolution used to represent the outer approxima-
tion. Critically, except for the Center of Gravity method, all cutting-plane algorithms summarized
in Table 1 have a polynomial complexity in the dimension of the optimization variables in terms of
both oracle queries and total runtime excluding the oracle calls (i.e., the total complexity of adding
the cuts and generating test points). This suggests that if a cutting-plane algorithm were applied
to Problem (COP), the complexity of the problem is offloaded onto the separation oracle–this is the
subroutine we propose to handle using an Ising solver.

3.3. Application to copositive optimization. Now that we have introduced cutting-plane
algorithms, we are in a position to discuss their application to the copositive program (COP). First,
we will show how a copositivity oracle can be readily transformed into a separation oracle for the
feasible region of Problem (COP). We will conclude with a discussion of how a copositivity oracle
can be implemented using an Ising solver. Formally, we define a copositivity oracle as follows:

Definition 3.4 (Copositivity Oracle). A copositivity oracle takes as input a matrix, M , and
either returns True if M is copositive or returns a vector z ∈ Rn

≥0 such that z⊤Mz < 0 (a “certificate
of non-copositivity”).

A copositivity oracle can be turned into a separation oracle for the feasible region of Problem
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Name Oracle Queries
Total runtime

(excluding oracle queries)
References

Center of Gravity O(m log(R
r )) #P-hard [52] [53]

Ellipsoid O(m2 log(mR
r )) O(m4 log(mR

r )) [54, 55, 56]
Inscribed Ellipsoid O(m log(mR

r )) O((m log(mR
r ))4.5) [57, 58]

Volumetric Center O(m log(mR
r )) O(m1+ω log(mR

r )) [59]

Analytic Center O(m log2(mR
r )) O(m1+ω log2(mR

r ) + (m log(mR
r ))2+

ω
2 ) [60]

Random Walk O(m log(mR
r )) O(m7 log(mR

r )) [61]

Lee, Sidford, Wong O(m log(mR
r )) O(m3 logO(1)(mR

r )) [62]

Table 1: This table summarizes the number of oracle queries and total runtime guarantees of a number
of well-known cutting-plane variants. The stated runtimes are in terms of the problem dimension, m,
the volume of the initial set, R, and the minimum volume of the set of interest, r. The constant ω
stands for the fast matrix multiplication constant.

(COP) by expanding the terms in z⊤M(µ̂, λ̂, γ̂)z. Explicitly, a test point, (µ̂, λ̂, γ̂), is infeasible if

and only if M(µ̂, λ̂, γ̂) is not copositive. Given M(µ̂, λ̂, γ̂) as input, the copositivity oracle returns a

certificate of non-copositivity z ∈ Rn+1
≥0 such that z⊤M(µ̂, λ̂, γ̂)z < 0. In contrast, feasibility means

that z⊤M(µ, λ, γ)z ≥ 0. Equivalently, the halfspace defined by

b = z⊤
(

Q c

c⊤ ·

)
z,(3.2)

a[µ
(lin)
i ] = z⊤

(
· 1

2A
⊤
i,∗

1
2Ai,∗ ·

)
z,(3.3)

a[µ
(quad)
i ] = z⊤

(
A⊤

i,∗Ai,∗ ·
· ·

)
z,(3.4)

a[λj ] = z⊤
(
−1{j}1{j}

⊤ 1
21{j}

1
21{j}

⊤ ·

)
z,(3.5)

a[γ] = z⊤
(
· ·
· 1

)
z,(3.6)

is a separating hyperplane for (µ̂, λ̂, γ̂), where we use symbolic indexing to explicitly denote which
variable each coefficient corresponds to. Explicitly, the inner product between a and (µ, λ, γ) is given
by

(3.7) a⊤(µ, λ, γ) =
∑
i

a[µ
(lin)
i ]µ

(lin)
i +

∑
i

a[µ
(quad)
i ]µ

(quad)
i +

∑
j

a[λj ]λj + a[γ]γ.

This shows that given a copositivity oracle, constructing a separation oracle for Problem (COP),
of dimension O(m) and copositivity constraints on matrices of size O(n), entails evaluating O(m)
vector-matrix-vector products, each of dimension O(n). The cutting-plane algorithms presented in
Section 3.2 can then be applied without further modification.

We note that the application of cutting-plane algorithms to copositive optimization has been ex-
plored from a classical perspective in [63], which considered their application to discrete markets and
games, and [64], which applied the algorithm to detect complete positivity of matrices. We believe
our work is complementary to these prior works. While our work relies on the off-the-shelf application
of well-known cutting-plane variants, the algorithmic modifications in [63], and [64] provide insight
for further improving our framework. For example, the cutting plane algorithm in [63] is readily hy-
bridized leveraging our proposed approach–we do not explore this extension in this paper due to their
lack of convergence guarantees, while those of the variants presented are central to our theoretical
analysis. Moreover, the problem settings considered in these works serve as inspiration for additional
applications that can be addressed with Ising solvers. On the other hand, the proof of strong duality
(Theorem 3.1) can be applied to address questions that were left open in [63]. We emphasize that
the contribution of this work is not the copositive reformulation or a novel cutting-plane algorithm
but rather the insight that these ideas are synergistic with recent advances in quantum(-inspired)
computing. In particular, copositive optimization is useful for deriving and analyzing new hybrid al-
gorithms rooted in existing convex optimization algorithms, thus filling a gap in the hybrid algorithms
literature.
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MBQP
Copositive 
Program

Cutting-plane: (Alg. 1)Pre-processing

Construct equivalent 
copositive program 
using (4) and (5)

Add cut

Generate 
test point

Check 
copositivity
(Ising solver)

Form separation cut

Separation oracle 
(Alg. 2)

Fig. 1: This figure depicts the entire solution process for solving a MBQP of the form (MBQP).

Checking copositivity of M(µ, λ, γ) is naturally posed as the following (possibly non-convex)
quadratic minimization problem

(3.8)

minimize
z ∈ Rn+1

≥0

z⊤M(µ, λ, γ)z

subject to ||z||p ≤ 1,

where a matrix is copositive if and only if min (3.8) is non-negative2. There are several alternative
approaches for checking copositivity [65, 66, 67, 68, 69]; however, they are typically derived with
Problem (3.8) as the starting point and designed to exploit particular properties of Problem (3.8).
By choosing p =∞, Problem (3.8) can be approximated by a QUBO where an approximation of the
matrix M , M̂ , is used such that the optimization variables ẑ represent a binary expansion of z with
k bits as follows:

(QUBO)
minimize

ẑ
ẑ⊤M̂(µ, λ, γ)ẑ

subject to ẑ ∈ {0, 1}k(n+1).

Explicitly, M̂(µ, λ, γ) and M(µ, λ, γ) are related as follows:

M̂(µ, λ, γ) = D⊤M(µ, λ, γ)D,(3.9)

where

D :=
1

2k − 1


20 · · · 2k−1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 20 · · · 2k−1 · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

...
0 · · · 0 0 · · · 0 · · · 20 · · · 2k−1

 ,(3.10)

The construction of (QUBO) is detailed in Appendix 6.2. The explicit implementation of Oracle(·)
is summarized in Algorithm 2. Critically, the constraints of (3.8) are implied by the natural domain
of the Ising solver, mitigating the need to tune coefficients in a penalty method carefully.

3.4. Discussion. In summary, we propose to solve Problem (MBQP) by constructing the equiv-
alent copositive formulation in (COP) and applying any variant of Algorithm 1. Within Algorithm
1, the implementation of Oracle(·) is specified by Algorithm 2. This process is depicted in Figure 1.
Now that we have presented our method in full, several comments are in order.

Computational complexity. While the stated complexity of the cutting-plane algorithms is appli-
cable to any problem, it is suggestively stated in terms of the variable m. This notational overload is
a deliberate choice because the dimension of the dual copositive program is equal to the total number
of constraints in Problem (CPP), which is 2m + |B|+ 1 = O(m). The number of constraints can be

2While copositivity is defined as a condition over all of Rn+1
≥0 , quadratic scaling of the objective ensures that

optimizing over a norm ball is sufficient for detecting copositivity.
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Algorithm 2: Separation oracle, Oracle(·)
Input: (µ̂, λ̂, γ̂) (Test point)
Output: {

True if (µ̂, λ̂, γ̂) is feasible

Separating hyperplane for (µ̂, λ̂, γ̂) otherwise

// Solve (QUBO) using an Ising solver

z∗ ← arg min
ẑ

(QUBO)

if min (QUBO) ≥ 0 then
return True ;

else

z = Dz∗(3.11)

b = z⊤
(

Q c

c⊤ ·

)
z(3.12)

a[µ
(lin)
i ] = z⊤

(
· 1

2A
⊤
i,∗

1
2Ai,∗ ·

)
z(3.13)

a[µ
(quad)
i ] = z⊤

(
A⊤

i,∗Ai,∗ ·
· ·

)
z(3.14)

a[λj ] = z⊤
(
−1{j}1{j}

⊤ 1
21{j}

1
21{j}

⊤ ·

)
z(3.15)

a[γ] = z⊤
(
· ·
· 1

)
z(3.16)

return a, b;

end

reduced to m + |B| + 1 using the homogenized completely positive reformulation presented in Ap-
pendix 6.1–while this will have no impact on the asymptotic complexity of the method, it can result
in a practical reduction in runtime. If TQ represents the oracle complexity of a particular method,
the total additional overhead of converting the copositivity oracle into a separation oracle is given by
O(mn2TQ).

Discretization size. Discretization of the copositivity check automatically introduces an approx-
imation to the copositivity checks. The approximation fidelity is improved as the number of dis-
cretization points is increased, although it is limited by the hardware. Not only does representing
a finer discretization require more qubits, but it also results in a greater skew in the coefficients of
the Ising Hamiltonian–this becomes challenging since many existing hardware platforms have limited
precision in their implementable couplings. In contrast, too coarse of a discretization runs the risk
of missing the certificate of non-copositivity entirely. This suggests that the discretization scheme
should be well-tailored to the problem at hand; Appendix 6.2 provides guidance for choosing a dis-
cretization size based on the coefficients of the Ising Hamiltonian. A promising alternative is to
circumvent discretization entirely, and apply quantum(-inspired) solvers that natively solve continu-
ous variable box-constrained quadratic programs, such as the coherent continuous-variable machine
(CCVM) recently proposed in [70].

Multiple cuts. Following standard convention, this work assumes that the copositivity oracle
returns a single value. In contrast, in practice, many of the aforementioned Ising solvers are heuristics
that involve multiple readouts. Each of these reads can be used to construct a cut, where negative,
zero, and positive Ising objective values correspond to deep, neutral, and shallow cuts, respectively.
Adding multiple cuts during each iteration is a possible heuristic for improving the convergence rate
of the cutting-plane algorithm. While the true ground state corresponds to the deepest cut, the
convergence rate guarantees stated in Table 1 hold so long as a neutral or deep cut is added at each
iteration. Consequently, the proposed approach is not overly reliant on the Ising solver’s ability to
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x1

x5

x3

x4

x2

(a)

(b) (c)

Fig. 2: Figure 2a depicts a small maximum clique example where there are edges between all vertices
except x4 and x5. Figure 2b depicts the adjacency matrix of graph 2a’s complement, which has a
single edge between vertices x4 and x5. Figure 2c depicts the solution process for the copositive
cutting-plane algorithm.

identify the ground state and is resilient to heuristics. Critically, this raises the question of how to
proceed if the Ising solver fails to return a certificate of non-copositivity, which will likely depend on
problem specifics, such as the current outer approximation, the objective values of the samples, and
the solver itself. For example, if the Ising solver returns positive but small solutions, depending on
the current outer approximation, the addition of shallow cuts can still reduce the search space. On
the other hand, if all non-zero solutions result in a large objective value, one could increase confidence
that the test point is feasible by increasing the number of discretization points and readouts.

4. Experiments. We conducted an investigation of the proposed method on the maximum
clique problem, which finds the largest complete subgraph of a graph. Given a graph, the maximum
clique problem can be formulated as a completely positive program

(4.1)

maximize
X ∈ Rn×n

〈
11⊤, X

〉
subject to

〈
A + I, X

〉
= 1,

X ∈ C∗n,

where A is the adjacency matrix of the graph’s complement [71]. The dual of (4.1) is the following
copositive program:

(4.2)
minimize
λ ∈ R

λ

subject to λ(I + A)− 11⊤ ∈ Cn.

This copositive program only has one variable regardless of the graph’s number of vertices or edges.
However, the copositivity check’s size is determined by the number of vertices, n, which impacts
the complexity of computing the cuts from the certificates of non-copositivity. The number of edges
can be used to upper-bound the size of the maximum clique, thus determining the size of the initial
feasible region; however, its effect on the complexity of checking copositivity is unclear.

12



10 30 50 70 90 11
0
13

0
15

0
17

0
19

0
21

0
23

0
25

0
27

010 30 50 70 90 11
0
13

0
15

0
17

0
19

0
21

0
23

0
25

0
27

0

10 2

100

102

Ti
m

e 
(s

)
p = 0.25

10 30 50 70 90 11
0

13
010 30 50 70 90 11

0
13

0

Number of Vertices

10 2

100

102

p = 0.5

10 30 50 7010 30 50 70

10 2

100

102

p = 0.75
Copositivity 
 checks
Remaining 
 operations

Fig. 3: This figure plots the time spent on the copositivity checks versus all other operations in the
proposed method. The copositivity checks grow exponentially with the number of vertices, while the
other operations grow modestly.

To study the scaling of the proposed approach, we considered random max-clique problems with
10, 30, . . . , 130 vertices. For each graph size, we generated 25 random Erdős-Renyi instances with edge
densities p ∈ {0.25, 0.5, 0.75} and solved to global optimality using the proposed copositive cutting
plane algorithm. All experiments were run on an AMD Ryzen 7 1800X Eight-Core Processor@3.6GHz
with 64GB of RAM and 16 threads. All code needed to reproduce these experiments is available at
https://github.com/StanfordASL/copositive-cutting-plane-max-clique.

Many hybrid algorithms are designed by replacing subroutines of existing (fully classical) al-
gorithms with a quantum(-inspired) counterpart. An oft-neglected consideration is whether the
quantum(-inspired) computer is applied to a bottleneck in the original algorithm. We contend that
for a hybrid algorithm to yield significant speed-ups, the quantized subroutine should constitute the
bulk of the algorithm’s complexity. In keeping with this supposition, we first evaluated whether the
copositive cutting-plane algorithm shifts the complexity of the solution process onto the copositivity
checks by profiling each component of the algorithm separately. The copositivity checks were con-
ducted by solving Anstreicher’s MILP characterization of copositivity [65] (which we found to be one
of the most competitive classical formulations), using Gurobi version 9.0.3 [72]. Figure 3 plots the
time the copositive cutting plane algorithm spent on the copositivity checks versus other operations
(updating the outer approximation and computing test points). The time spent on the copositivity
checks scales exponentially with the number of vertices in the graph, while the time spent on other
operations grows modestly. This is because Problem (4.1) only has one constraint regardless of the
graph’s number of vertices or edges. In contrast, the size of the copositivity check is exactly equal to
the number of vertices in the graph. Both the theoretical analysis and empirical results confirm that
the proposed approach shifts the complexity of the copositive program onto the copositivity checks.
This experiment shows that the proposed methodology is particularly effective for problems whose
constraints remain constant or grow modestly with problem size.

While undesirable for a fully classical implementation, the overwhelming complexity in the coposi-
tivity checks represents an opportunity for a quantum(-inspired) solver to beget significant speed-ups –
they will result from being able to execute the copositivity checks faster than the classical implementa-
tion (i.e., Anstreicher’s MILP formulation). To investigate potential speedups from using a stochastic
Ising solver, we re-solved each copositivity check that yielded a certificate of non-copositivity using
Simulated Annealing (SA) through the software Neal version 0.5.9, a SA sampler [73], i.e., a solver
that returns samples on the solutions distribution generated by SA. Because SA is not guaranteed to
find the global optima in a single annealing cycle, we define a probabilistic notion of time to target.
In particular, we follow [74] and define the time to target with s confidence to be the number of
repetitions to find the ground state at least once with probability s multiplied by the time for each
annealing cycle, Tanneal, i.e.,

TTTs = Tanneal
log(1− s)

log(1− p̂succ)
,(4.3)

where p̂succ is the expected value of the returned solution divided by the ground state/minimum. This
results in a probability of success that interpolates between counting only solutions corresponding
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Fig. 4: This figure plots the time to target to 99% confidence of the Simulated Annealing (SA)
implementation in Neal (replacing the continuous feasible region, [0, 1]n, with its vertices, {0, 1}n)
against the solution time of Gurobi for the copositivity checks. We solved each copositivity check
with 100 sweeps and 1000 reads. For all densities, both methods scale exponentially with the number
of vertices in the graph; however, SA is several orders of magnitude faster than Gurobi.

to the ground state and counting all certificates of non-copositivity as successes by considering the
relative quality of each sample. We will also consider analogous scenarios where only ground state solu-

tions are counted as success; we reserve the terminology “time to solution”, TTSs = Tanneal
log(1−s)

log(1−psucc)
,

for such cases to distinguish from the previously defined time to target. The values of p̂succ and psucc is
evaluated empirically over 1000 samples/reads. The time per annealing cycle, Tanneal, was evaluated
as the total wall-clock time (for all reads) divided by the number of reads. All other Neal parameters
were left as their default values.

For each copositivity check solved, we considered discretizations corresponding to
minẑ∈{0, 1}n ẑ⊤Mẑ (i.e., no additional problem discretization). We solved each copositivity check
with 100 sweeps and 1000 reads3. Figure 4 plots the time to target with 99% confidence from Neal

against the solution time from Gurobi4. We see that for all graph sizes, Neal can consistently find
certificates of non-copositivity in orders of magnitude less time than Gurobi. Notably, Neal and
Gurobi demonstrate similar scaling with respect to the number of vertices.

Unlike SA, which operates without reference to rigorous optimality bounds, Gurobi’s solution
process tracks both upper and lower bounds on the objective value and terminates only when they
reach user-specified stopping conditions. To evaluate whether the optimal objective is found early
in the solution process and time is spent closing the upper bounds, we plotted Gurobi’s lower and
upper bounds progress against time together with TTT0.99 and TTT0.999 in Figure 5 for instances with
density p = 0.25. Analogous plots for other densities are included in the Appendix. For each graph
size, we plotted the instances where the ratio between Gurobi’s solution time and TTT0.99 is the
greatest (top row) and least (bottom row)–all instances were run with 100 sweeps. For each instance,
we plot Gurobi’s upper bound (blue) and best objective found (orange), and Neal TTT0.99 (green),
and TTT0.999 (purple). We found that in most instances, Neal reaches the time to target with 99.9%
confidence before Gurobi even returns a callback (i.e., when the purple line does not intersect either
of the blue or orange lines); this is likely due to an initial pre-processing step. We only found one
instance where Gurobi was able to confirm optimality at the first callback even so, TTT0.999 is nearly
an order of magnitude faster than Gurobi’s solution time in this instance.

Next, we compared the copositive cutting-plane algorithm with the SA implementation in
Neal as the Ising solver against solving a mixed-integer linear program (MILP) formulation of
maximum-clique directly with Gurobi. Gurobi’s solution time was evaluated on the following MILP

3While the performance of Neal depends on the number of sweeps, we found that optimizing the number of sweeps
does not result in significant reductions in the time to target. We provide further discussion in the Appendix 6.3.

4Note that Gurobi’s solution time in Figure 4 is different from copositivity checks profiling in Figure 3. This is
because only non-copositive instances were considered for this comparison, while all instances, including copositive
ones, were included in the profiling comparison.
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Fig. 5: This figure depicts sample trajectories of Gurobi’s upper and lower bounds against TTT0.99
and TTT0.999 for edge density p = 0.25. For each graph size, the top row represents the instance where
the ratio between Gurobi’s solution time and TTT0.99 is the greatest, and the bottom row represents
the instance where the ratio is the smallest–all instances were run with 100 sweeps. In most instances,
Neal reaches the TTT0.999 confidence before Gurobi even returns a callback (i.e., when the purple line
does not intersect either of the blue or orange lines).

formulation of maximum clique:

(4.4)

minimize
x ∈ {0, 1}n

1⊤x

subject to xi + xj ≤ 1, ∀(i, j) ∈ E,

where E is the edges in the complement graph. This is a MILP with n binary variables, where
n is the number of vertices in the graph, and |E| constraints (i.e., the number of edges in the
complement graph). The copositive cutting-plane algorithm was tested with different sweeps and
reads, which were fixed throughout each run of the algorithm. The pink lines in Figure 6 plot the
runtime of the copositive cutting-plane algorithm for a representative set of these parameters. Because
Neal may fail to find a certificate for some non-copositive matrices, this method may incorrectly
reduce the upper bound in the outer approximation; however, it cannot incorrectly update the lower
bound. Consequently, the solution returned was determined by rounding the lower bound up to the
nearest integer. The fraction of correct maximum clique solutions is indicated by the color of the
markers. From the pink plots, we see that for a fixed parameter setting, the copositive cutting-plane
algorithm exhibits polynomial scaling in the graph size. While it is tempting to extrapolate this
scaling relationship to larger graph sizes, the failure of parameters that were successful on smaller
graphs on larger graph sizes (denoted by the green and blue markers) indicate that it is unlikely that
fixed parameter settings will continue to be effective ad infinitum. In particular, we found that while
smaller and sparser instances are tolerant of fewer sweeps and reads (resulting in shorter calls to the
Ising solver), larger instances required more sweeps and reads to be accurate. While the copositive
cutting-plane algorithm is designed to benefit from speed-ups of state-of-the-art Ising solvers, the
converse is also expected–poor scaling of the Ising solver will make its way into the runtime as the
time spent in each oracle call, TQ. On the other hand, we observe that the confidence intervals for
Neal are significantly wider than those of Gurobi and the copositive cutting-plane algorithm – this
is potentially due to the sensitivity of Neal to its penalty weight. While Neal can also produce
lower bounds for the maximum clique, the bounds can only be updated when it returns solution
corresponds to a clique. In contrast, the copositive cutting-plane algorithm can generate cuts from
any certificate of non-copositivity, even those that do not correspond to a clique at all. This means
that the copositive cutting-plane algorithm can make progress from a larger set of the solutions
returned by the Ising solver. This suggests that the copositive cutting-plane algorithm may even be
competitive against its underlying copositivity checker solving a direct formulation of the problem,
particularly if its performance is highly sensitive to parameter settings. Finally, we note that Gurobi
takes advantage of multi-threading while neither Neal nor the copositive cutting-plane algorithm do.
This raises the important question of how much the copositive cutting-plane algorithm (and Neal)
will benefit from similar decomposition and parallelization efforts.

Finally, we investigated the effectiveness of directly converting the maximum clique problem to an
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Fig. 6: This figure plots the solution time for the copositive cutting-plane algorithm with the Sim-
ulated Annealing implementation in Neal as the Ising solver (with various fixed parameters), the
solution time when solving a mixed-integer programming (MILP) formulation of maximum-clique
directly with Gurobi, and the corresponding TTT0.999 from Neal applied to the maximum clique for-
mulation with penalty weight 1. While Gurobi’s solution time is orders of magnitude faster than the
copositive cutting-plane algorithm for the smallest graph sizes, the copositive cutting-plane algorithm
starts outperforming it for larger graph sizes.

Ising problem using a standard penalty formulation. To do so, we solved each of the maximum clique
problem instances using the maximum clique formulator5 with Neal as the sampler and a range of
penalty weights in {2−1, 20, . . . , 24}; the number of sweeps was left to its default value of 1000. This
results in a QUBO with n variables and |E| quadratic terms. For each instance, we conducted 1000
reads and evaluated the average normalized sample size (the size of the returned solution divided by
the ground truth maximum clique size) and the fraction of reads that resulted in a valid clique; a
ground state solution is one that is both a valid clique and has a normalized sample size of 1. We
computed the probability of success, psucc, as the fraction of reads that resulted in a ground state
solution, which was subsequently used to derive the time to solution to 99.9% confidence. Figure
7 plots each of these metrics as a function of the penalty weights and graph size for edge density
p = 0.25. Analogous plots for other densities are included in the Appendix. For penalty weights 0.5
and 1, the normalized sample size is often greater than 1, resulting in samples that do not represent
a valid clique. For penalty weights 2, 4, 8, and 16, most samples were valid cliques; however, the
normalized sample sizes were typically less than 1–these represent non-maximum cliques. Generally,
as the penalty weight is increased, the normalized sample size decreases, and the fraction of valid
cliques increases. This aligns with the interpretation that the penalty weight represents a trade-
off between satisfying the constraints versus optimizing the objective. These empirical results also
corroborate the analytical results of [75], which state that the minimum valid penalty weight for the
stable set of a graph is 1. Given that maximum clique represents the maximum clique problem as
finding the stable set of the graph built with the complement of the original edges, the bound on the
penalty weight is valid. This experiment demonstrates that while the penalty formulation may be an
effective heuristic, it typically requires carefully tuning the penalty weights to optimize the trade-off
between satisfying the constraints and optimizing the objective. Figure 6 also plots the corresponding
TTT0.999 from Neal applied directly to the maximum clique formulation with penalty weight 1 against
the Gurobi solution time and the copositive cutting-plane solution time.

5. Conclusions. In this paper, we advocate for the development of a theory of hybrid quantum-
classical algorithms that analytically quantifies their performance. Metrics for comparing different
hybrid algorithms may include the number of calls to the quantum computer, the complexity of the
classical portion, and the requirements on the quantum computer. As a step in this direction, we
demonstrate a class of hybrid algorithms for mixed-binary quadratic programming problems using
Ising solvers and report the aforementioned metrics. Our framework relies on Burer’s convex refor-
mulation of such problems using completely positive programming–our first contribution is to extend
this result and show that under mild conditions, the dual copositive program exhibits strong duality.

5https://docs.ocean.dwavesys.com/projects/dwave-networkx/en/latest/reference/algorithms/generated/
dwave networkx.maximum clique.html
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We then propose a hybrid quantum-classic solution algorithm based on cutting-plane algorithms,
where an Ising solver is used to construct the separation oracle. This approach partially mitigates
the heuristic nature of many state-of-the-art Ising solvers. Moreover, the runtime of the components
handled by the classical computer scales polynomially with the number of constraints in the original
mixed-binary quadratic program. This suggests that if our approach is applied to a problem with ex-
ponential scaling, the complexity is shifted on the subroutine carried out by the hardware accelerator,
e.g., the quantum computer. Our proposed approach is particularly appealing because it suggests
that the proposed approach could take advantage of any speedup that exists even without an explicit
characterization of what that speedup is.

While the proposed framework seems like a promising way forward for utilizing quantum/quantum-
inspired Ising solvers, a crucial question remains regarding how the algorithm should proceed if the
Ising solver fails to find a certificate of non-copositivity. Could one design an efficient algorithm that
circumvents the ambiguity due to failure to find a certificate of non-copositivity (perhaps using a
sum-of-squares-based inner approximations of the copositive cone)? Alternatively, is there a com-
plexity barrier that prevents such a construction? More broadly, identifying fundamental limitations,
such as this example, is important for understanding what requirements should be placed on new
computing architectures. While the theory in this paper is framed in the context of understanding
algorithms that interact with existing hardware, we believe its most potent impact is in informing
the co-design of “hardware primitives” and optimization algorithms.
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6. Appendix.

6.1. Proof of strong duality. Problem (CPP) is equivalent to the following homogenous form
completely positive program (i.e., min (CPP) = min (Hom-CPP)):

(Hom-CPP)

minimize
x ∈ Rn, X ∈ Rn×n

〈(
Q c

c⊤ ·

)
,
(

X x

x⊤ 1

)〉
subject to

〈(
A⊤

i,∗Ai,∗ −biA
⊤
i,∗

−biAi,∗ b2i

)
,
(

X x

x⊤ 1

)〉
= 0,〈(

−1{j}1{j}
⊤ 1

21{j}
1
21{j}

⊤ ·

)
,
(

X x

x⊤ 1

)〉
= 0, ∀j ∈ B,(

X x

x⊤ 1

)
∈ C∗n+1.

This form will be useful for proving strong duality. Because the homogenized from of the equality
constraints form a cone, this perspective will help prove strong duality between Problem (CPP) and

20

http://www.gurobi.com
https://docs.ocean.dwavesys.com/_/downloads/neal/en/latest/pdf/
https://docs.ocean.dwavesys.com/_/downloads/neal/en/latest/pdf/


its dual. The Lagrangian dual of (Hom-CPP) is the following copositive optimization problem:

(Hom-COP)

maximize
µ, λ, γ

γ

subject to M̂(µ, λ, γ) ∈ Cn+1,

where M̂(µ, λ, γ) is defined as

(6.1)

M̂(µ, λ, γ) :=
(

Q c

c⊤ ·

)
−
∑
i

µi

(
A⊤

i,∗Ai,∗ −biA
⊤
i,∗

−biAi,∗ b2i

)
−
∑
j∈B

λj

(
−1{j}1{j}

⊤ 1
21{j}

1
21{j}

⊤ ·

)
− γ
(
· ·
· 1

)
.

Theorem 6.1 (Homogeneous Strong Duality). If Problem (MBQP) is feasible with bounded
feasible region, then strong duality holds between Problems (Hom-CPP) and (Hom-COP).

Proof. Notice that the set of affine constraints,

(6.2) NULL :=
{
X̃ |

〈(
A⊤

i,∗Ai,∗ −biA
⊤
i,∗

−biAi,∗ b2i

)
, X̃
〉

= 0,
〈(

−1{j}1{j}
⊤ 1

21{j}
1
21{j}

⊤ ·

)
, X̃
〉

= 0
}
,

forms a cone. So, we could express (Hom-CPP) as the following optimization problem:

(6.3)

minimize
X̃ ∈ R(n+1)×(n+1)

〈(
Q c

c⊤ ·

)
, X̃
〉

subject to
〈(

· ·
· 1

)
, X̃
〉

= 1,

X̃ ∈ C∗n+1 ∩NULL.

As a quick aside, rewriting the problem in this way does not change the Lagrangian dual problem.
To see this, we first write the Lagrangian dual of Problem (6.3) as

(6.4)

maximize
γ ∈ R, M̃ ∈ R(n+1)×(n)

γ

subject to M̃ =
(

Q c

c⊤ ·

)
− γ
(
· ·
· 1

)
,

M̃ ∈ Cn+1 +NULL∗

and notice that NULL∗ is spanned by

(6.5)
{(

A⊤
i,∗Ai,∗ −biA

⊤
i,∗

−biAi,∗ b2i

)}
∪
{(

−1{j}1{j}
⊤ 1

21{j}
1
21{j}

⊤ ·

)
]
}
.

Here, we take care to note that the Lagrangian dual may differ from the conic dual. In particular,
feasibility of (MBQP) is sufficient for ensuring strong duality when M̃ is optimized over (C∗∩NULL)∗

[44, Prop 5.3.9]; however, it is not guaranteed that (C∗ ∩ NULL)∗ is equal to C + NULL∗–this is
the case if and only if C +NULL∗ is closed.

To establish strong duality, we will first assert that if Problem (MBQP) is feasible with a bounded
feasible region, then Problem (Hom-CPP) has a nonempty and bounded set of optimal solutions.
This follows directly from [8, Corollary 2.6], which states that for all optimal solutions, (x∗, X∗),
of (Hom-CPP), x∗ must lie within the convex hull of optimal solutions for (MBQP). If the set of
optimal solutions for (MBQP) is non-empty and bounded, so is their convex hull. This establishes
that the set of optimal solutions of (Hom-CPP) is also non-empty and bounded, allowing us to apply
[76, Theorem 1.1], which establishes strong duality of conic optimization problems with two cone
constraints and a single hyperplane constraint under non-emptiness and boundedness of the optimal
solution set. The establishes that

(6.6) max (Hom-COP) = min (Hom-CPP),

While Theorem 6.1 establishes strong duality of the homogenous CPP, we have yet to show
that the non-homogeneous form also exhibits strong duality. In order to do so, we will show that
the supremum of the (non-homogeneous) copositive program upper-bounds that of the homogeneous
program.
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Theorem 6.2 (Inhomogeneous Lower Bound). The optimal objective of Problem (COP) is at
least that of Problem (Hom-COP) (i.e., max (COP) ≥ max (Hom-COP)).

Proof. We will do this by showing that for each (µ̂, λ̂, γ̂) there exists (µ, λ, γ) such that

(6.7) M(µ, λ, γ) = M̂(µ̂, λ̂, γ̂),

and

(6.8) γ +
∑
i

µ
(lin)
i bi + µ

(quad)
i b2i = γ̂.

In other words, any feasible solution for (Hom-COP) can be transformed into a feasible solution for
(COP) with equal objective value. To see this, we will suggestively break up γ = γ(res) +

∑
i γi so

equation (3.1) can be expanded as

(6.9)

M(µ, λ, γ) =
(

Q c

c⊤ ·

)
−
∑
i

(
µ
(lin)
i

(
· 1

2A
⊤
i,∗

1
2Ai,∗ ·

)
+ µ

(quad)
i

(
A⊤

i,∗Ai,∗ ·
· ·

)
+ γi

(
· ·
· 1

))
−
∑
j∈B

λj

(
−1{j}1{j}

⊤ 1
21{j}

1
21{j}

⊤ ·

)
− γ(res)

(
· ·
· 1

)
Then, the proposed (µ, λ, γ) is given by

λj = λ̂j(6.10)

µ
(lin)
i = −2biµ̂i(6.11)

µ
(quad)
i = µ̂i(6.12)

γi = b2i µ̂i(6.13)

γ(res) = γ̂(6.14)

Then, notice that

µ
(lin)
i

(
· 1

2A
⊤
i,∗

1
2Ai,∗ ·

)
+ µ

(quad)
i

(
A⊤

i,∗Ai,∗ ·
· ·

)
+ γi

(
· ·
· 1

)
(6.15)

= −2biµ̂i

(
· 1

2A
⊤
i,∗

1
2Ai,∗ ·

)
+ µ̂i

(
A⊤

i,∗Ai,∗ ·
· ·

)
+ b2i µ̂i

(
· ·
· 1

)
(6.16)

= µ̂i

(
−2bi

(
· 1

2A
⊤
i,∗

1
2Ai,∗ ·

)
+
(
A⊤

i,∗Ai,∗ ·
· ·

)
+ b2i

(
· ·
· 1

))
(6.17)

= µ̂i

(
A⊤

i,∗Ai,∗ −biA
⊤
i,∗

−biAi,∗ b2i

)
(6.18)

so by matching up terms in the sums, we see that M(µ, λ, γ) = M̂(µ̂, λ̂, γ̂). As for the objective value,

γ +
∑
i

µ
(lin)
i bi + µ

(quad)
i b2i(6.19)

= γ(res) +
∑
i

µ
(lin)
i bi + µ

(quad)
i b2i + γi(6.20)

= γ̂ +
∑
i

−2b2i µ̂i + b2i µ̂i + b2i µ̂i(6.21)

= γ̂ +
∑
i

µ̂i(−2b2i + b2i + b2i )(6.22)

= γ̂(6.23)

so for each (µ̂, λ̂, γ̂) the proposed (µ, λ, γ) has equal objective value.

Corollary 6.3. If Problem (MBQP) is feasible with bounded feasible region, then strong duality
holds between Problems (CPP) and (COP).

Proof. Theorem shows that max (COP) ≥ max (Hom-COP). So we have max (Hom-COP) ≤
max (COP) ≤ min (CPP) = min (Hom-CPP). Combining this with max (Hom-COP) = min (Hom-CPP)
we get

(6.24) max (Hom-COP) = max (COP) = min (CPP) = min (Hom-CPP).

Thus, strong duality must hold between (COP) and (CPP).
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6.2. Discretizing the copositivity checks.

6.2.1. Constructing the QUBO. In this section, we will discuss forming the QUBO to ap-
proximate the copositivity checks. Formally, instead of solving (3.8) with feasible region {z ∈ Rn+1

≥0 |
∥z∥∞ ≤ 1}, we will approximate the feasible region with {0, 1

K , . . . , K−1
K , 1}n+1, leading to a quadratic

unconstrained integer optimization,

(QUIO)

minimize
z

z⊤M(µ, λ, γ)z

subject to z ∈
{

0,
1

K
, . . . ,

K − 1

K
, 1

}n+1

For simplicity, assume that K = 2k − 1 for some k ∈ Z>0. Then Problem (QUIO) is equivalent to
minimizing (QUBO), where

M̂(µ, λ, γ) = D⊤M(µ, λ, γ)D(6.25)

and

D :=
1

K


20 · · · 2k−1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 20 · · · 2k−1 · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

...
0 · · · 0 0 · · · 0 · · · 20 · · · 2k−1

 ,(6.26)

over the variables ẑ ∈ {0, 1}k(n+1). The new variables ẑ simply represent the binary expansion of
z, i.e., z = 1

KDẑ. One could also use a unary expansion at the expense of a larger size expansion
and redundancy in the encoding. Additionally, while we have written out a uniform expansion for all
variables, it is possible to have a heterogenous discretization scheme. More sophisticated discretization
schemes are discussed in depth in [77].

6.2.2. Choosing a discretization size. When discretizing the copositivity checks, it is critical
to ensure that the discretization size is fine enough. This section provides guidance for choosing a
discretization size given a particular QUBO. To do so, we will consider minimizing z⊤Mz over a
discrete grid z ∈ {0, 1

K , . . . , K−1
K , 1}n and bound the difference if we have minimized ẑ⊤Mẑ over

the hypercube instead, ẑ ∈ [0, 1]n. In particular, we are interested in the case where there are no
certificates of non-copositivity on the discrete grid, i.e., z⊤Mz ≥ 0 for all z ∈ {0, 1

K , . . . , K−1
K , 1}n,

yet there is ẑ ∈ [0, 1]n with ẑ⊤Mẑ = −δ < 0. We will decompose ẑ = z + ∆ as the nearest grid point,
z ∈ {0, 1

K , . . . , K−1
K , 1}n, plus a small correction factor ∆ ∈ Rn.

Because the norm of this correction factor is bounded by ∥∆∥∞ ≤ 1
2K (i.e., by rounding), we will

lower-bound (z + ∆)⊤M(z + ∆) as a function of ∥∆∥. Expanding (z + ∆)⊤M(z + ∆) out we get

(6.27) (z + ∆)⊤M(z + ∆) = z⊤Mz + 2∆⊤Mz + ∆⊤M∆.

Applying the assumption that z⊤Mz ≥ 0 for all z ∈ {0, 1
K , . . . , K−1

K , 1}n, we get

(6.28) (z + ∆)⊤M(z + ∆) ≥ −|2∆⊤Mz + ∆⊤M∆|.

In order to lower-bound, ẑ⊤Mẑ, we upper-bound |2∆⊤Mz + ∆⊤M∆|,

|2∆⊤Mz + ∆⊤M∆| =
∥∥2∆⊤Mz + ∆⊤M∆

∥∥
∞(6.29)

≤ 2 ∥∆∥∞ ∥z∥∞ ∥M∥∞ + ∥∆∥2∞ ∥M∥∞(6.30)

≤ (2 ∥∆∥∞ + ∥∆∥2∞) ∥M∥∞(6.31)

≤
(

1

K
+

1

4K2

)
∥M∥∞ .(6.32)

Recall that we assume the minimum copositivity check is achieved at −δ = (z + ∆)⊤M(z + ∆), so
if K > 1

2(
√

δ
∥M∥∞

+1−1)
, then there exists z ∈ {0, 1

K , . . . , K−1
K , 1}n with z⊤Mz < 0. This represents

the coarsest discretization where optimizing over the discrete grid rather than the unit hypercube is
insufficient for detecting the certificate of non-copositivity.
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Fig. 8: This figure plots the optimized TTT0.999 when Neal was run with 100 sweeps. Optimization
produces an order of magnitude speed-up for graphs with 10 nodes but does not result in significant
speed-ups for larger graphs.
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Fig. 9: This figure plots the optimal number of sweeps for each of the problem instances. The optimal
number of sweeps increases with the graph size. However, graphs of densities p = 0.25 and p = 0.75
require a comparable number of sweeps for graphs of the same size, while fewer sweeps are required
for graphs with density p = 0.5

6.3. Hyper-parameter optimization. To investigate further speed-ups from turning the sim-
ulated annealing parameters, we optimized the number of sweeps using Hyperopt [78] with 25 trials
for each instance. Figure 8 plots the optimized TTT0.99 and the TTT0.99 when Neal was run with
100 sweeps. While the optimization produced significant relative improvements for graphs with 10
nodes, the improvement for larger graphs remained marginal, especially in light of the computational
overhead required to optimize the parameters. Figure 9 plots the optimal number of sweeps for each
problem instance. Generally, the optimal number of sweeps increases with the number of vertices.
While graphs of densities p = 0.25 and p = 0.75 require a comparable number of sweeps for graphs
of the same size, fewer sweeps are required for graphs with density p = 0.5.

6.4. Illustrative example. In this section, we will walk through a small MBQP to illustrate the
translation into the equivalent copositive program. Consider the following mixed-binary optimization
problem:

(Ex-MBQP)

minimize
x1, x2

(
x1 x2

)( 1 −1
−1 ·

)(
x1

x2

)
subject to x1 + x2 = 1,

x1, x2 ∈ R≥0.

The optimal solution is given by

(6.33) x∗
1 =

1

3
, x∗

2 =
2

3
,
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which gives an optimal objective value of − 1
3 .

The equivalent completely positive program is given by

(Ex-CPP)

minimize
X ∈ R2×2, x ∈ R2

〈(
1 −1 ·
−1 · ·
· · ·

)
,
(

X x

x⊤ 1

)〉

subject to

〈( · · 1
· · 1
1 1 ·

)
,
(

X x

x⊤ 1

)〉
= 2,

〈(
1 1 ·
1 1 ·
· · ·

)
,
(

X x

x⊤ 1

)〉
= 1,

〈(· · ·
· · ·
· · 1

)
,
(

X x

x⊤ 1

)〉
= 1,(

X x

x⊤ 1

)
∈ C∗3 .

The optimal solution of (Ex-CPP) is determined by the quadratic expansion of the optimal solution
of (Ex-MBQP) as follows:

(6.34)
(

X∗ x∗

x∗⊤ 1

)
=

x∗
1

x∗
2

1

(x∗
1 x∗

2 1
)

=

1/9 2/9 1/3
2/9 4/9 2/3
1/3 2/3 1


The dual copositive program is given by

(Ex-COP)
maximize
µ, λ, γ

γ + 2µ(lin) + µ(quad)

subject to M(µ, λ, γ) ∈ C3
where

(6.35) M(µ, λ, γ) =

 1− µ(quad) −1− µ(quad) −µ(lin)

−1− µ(quad) −µ(quad) −µ(lin)

−µ(lin) −µ(lin) −γ


Figure 13 plots the outer bounding ellipsoid for the first 9 iterations of the copositive cutting plane
algorithm (with the ellipsoid method as the cutting-plane algorithm) applied to Problem (Ex-COP).
For each iteration, the red dot depicts the test point, and the blue ellipsoid plots the outer bounding
ellipsoid at the start of the iteration. The initial ellipsoid is chosen to be a sphere, but as the
algorithm progresses, we observe that the outer bounding ellipsoid becomes elongated. This behavior
is explained by the fact that the optimal solution set for this particular problem is a line.

6.5. Ellipsoid Algorithm. In this section, we will overview the ellipsoid algorithm as a repre-
sentative example of cutting-plane algorithms [51]. As suggested by its name, the outer approximation
defined by an ellipsoid. An ellipsoid in Rm is parametrized by a center, x ∈ Rm, and positive definite
matrix, P ∈ Sm++, and is defined as

(6.36) E(x, P ) := {s ∈ Rm | (s− x)P−1(s− x) ≤ 1}.
The volume of E(x, P ) scales with the determinant of P ,

(6.37) Vol(E(x, P )) =
πm/2

Γ
(m

2
+ 1
)√det(P ).

In the ellipsoid algorithm, the center will always be the test point. Given a separating hyperplane
for x (recall that this is defined by a vector a ∈ Rm such that a⊤s ≤ a⊤x for all s ∈ S), the ellipsoid
updates the outer approximation with the minimum volume ellipsoid containing both E(x, P ) and
{s ∈ Rm | a⊤s ≤ a⊤x}. Conveniently, this ellipsoid, E(x̂, P̂ ), has a closed form representation with

x̂(x, P, a) = x− Pa

(m + 1)
√
a⊤Pa

,(6.38)

P̂ (x, P, a) =
m2

m2 − 1

(
P − 2Paa⊤P

(m + 1)a⊤Pa

)
.(6.39)
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Fig. 10: This figure depicts sample trajectories of Gurobi’s upper and lower bounds against TTT0.99
and TTT0.999 for edge density p = 0.5 (above) and p = 0.75 (below). For each graph size, the top row
represents the instance where the ratio between Gurobi’s solution time and TTT0.99 is the greatest,
and the bottom row represents the instance where the ratio is the smallest–all instances were run
with 100 sweeps. In most instances, Neal reaches the TTT0.999 confidence before Gurobi even returns
a callback (i.e., when the purple line does not intersect either of the blue or orange lines).

Now we are in a position to present the ellipsoid algorithm in the terminology of Section 3.2. To
initialize the algorithm, the user chooses x0 and P0 appropriately and chooses a final tolerance r.
The outer approximations for each iteration are maintained via xk and Pk, i.e., Sk = E(xk, Pk).
Evaluating the center of Sk involves simply returning the stored value for xk, i.e., Center(Sk) = xk

The initial volume is determined from Equation (6.37) as R = Vol(E(x0, P0)). At each iteration, the
separation oracle, Oracle(xk), is evaluated using Algorithm 2, and outer approximation is updated
as follows:

xk+1 = x̂(xk, Pk, Oracle(xk)),(6.40)

Pk+1 = P̂ (xk, Pk, Oracle(xk)),(6.41)

Add Cut(Sk, Oracle(x)) = E(xk+1, Pk+1).(6.42)

6.6. Additional plots.
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Fig. 11: This figure plots the normalized sample size (the size of the returned solution divided by
the ground truth maximum clique size) and the fraction of reads that resulted in a valid clique for
graph density p = 0.5. These figures were used to compute the fraction of reads resulting in a ground
state solution and the corresponding TTT0.999 (also plotted). As the penalty weight is increased, the
normalized sample size decreases, and the fraction of valid cliques increases. This highlights the
delicate trade-off between constraints and the objective in penalty formulations.
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Fig. 12: This figure plots the normalized sample size (the size of the returned solution divided by the
ground truth maximum clique size) and the fraction of reads that resulted in a valid clique for graph
density p = 0.75. These figures were used to compute the fraction of reads resulting in a ground
state solution and the corresponding TTT0.999 (also plotted). As the penalty weight is increased, the
normalized sample size decreases, and the fraction of valid cliques increases. This highlights the
delicate trade-off between constraints and the objective in penalty formulations.
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Fig. 13: This figure plots the outer bounding ellipsoid for the first nine iterations of the copositive
cutting plane algorithm applied to Problem (Ex-COP). In each plot, the red dot depicts the test
point, and the blue ellipsoid plots the outer bounding ellipsoid at the start of the iteration.
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